منابع مشابه
Ground-state structures of atomic metallic hydrogen.
Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s...
متن کاملHigh-temperature superconductivity in atomic metallic hydrogen
Superconductivity in the recently proposed ground-state structures of atomic metallic hydrogen is calculated over the pressure range 500 GPa to 3.5 TPa. Near molecular dissociation, the electron-phonon coupling λ and renormalized Coulomb repulsion are similar to the molecular phase. A nearly continuous increase in the critical temperature Tc with pressure is thus predicted in this range, to ∼35...
متن کاملCoupled electron-ion monte carlo calculations of dense metallic hydrogen.
We present an efficient new Monte Carlo method which couples path integrals for finite temperature protons with quantum Monte Carlo calculations for ground state electrons, and we apply it to metallic hydrogen for pressures beyond molecular dissociation. We report data for the equation of state for temperatures across the melting of the proton crystal. Our data exhibit more structure and higher...
متن کاملStoichiometry in Inter-Metallic Compounds for Hydrogen Storage Applications
This chapter is devoted to the discussion of the influence of stoichiometry deviation on the structure, gaseous phase hydrogen storage, and electrochemical properties of some important inter-metallic compounds (IMC). First, the hydrogen storage characteristics and other important features of the IMC will be reviewed and then there will be a discussion of the AB5, AB2, A2B7, and AB metal hydride...
متن کاملTrial wave functions for high-pressure metallic hydrogen
Many body trial wave functions are the key ingredient for accurate QuantumMonte Carlo estimates of total electronic energies in many electron systems. In the Coupled Electron-Ion Monte Carlo method, the accuracy of the trial function must be conjugated with the efficiency of its evaluation. We report recent progress in trial wave functions for metallic hydrogen implemented in the Coupled Electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 1978
ISSN: 0028-0836,1476-4687
DOI: 10.1038/276758b0